Datenblatt-pdf.com


uP6103 Schematic ( PDF Datasheet ) - uPI Semiconductor

Teilenummer uP6103
Beschreibung 5V/12V Synchronous-Rectified Buck Controller
Hersteller uPI Semiconductor
Logo uPI Semiconductor Logo 




Gesamt 15 Seiten
uP6103 Datasheet, Funktion
uP6103
5V/12V Synchronous-Rectified
Buck Controller with Reference Input
General Description
Features
The uP6103 is a compact synchronous-rectified buck
controller specifically designed to operate from 5V or 12V
supply voltage and to deliver high quality output voltage as
low as 0.4V. These SOP-8 and PSOP-8 devices operate at
fixed 200/300 kHz frequency and provide an optimal level
of integration to reduce size and cost of the power supply.
The uP6103 supports both tracking mode and stand-alone
mode operation. The output voltage is tightly regulated to
the external reference voltage from 0.4V to 3.0V at tracking
mode or to internal 0.6V reference at stand-alone mode.
This controller integrates internal MOSFET drivers that
support 12V+12V bootstrapped voltage for high efficiency
power conversion. The bootstrap diode is built-in to simplify
the circuit design and minimize external part count.
Other features include internal softstart, undervoltage
protection, overcurrent protection and shutdown function.
With aforementioned functions, this part provides
customers a compact, high efficiency, well-protected and
cost-effective solutions. This part is available in SOP-8 and
PSOP-8 packages.
Ordering Information
Order Number Package Top Marking
Remark
uP6103S8 SOP-8L uP6103S8
200kHz
uP6103AS8 SOP-8L uP6103AS8
300kHz
uP6103ASU8 PSOP-8L uP6103ASU8
300kHz
Note: uPI products are compatible with the current IPC/
JEDEC J-STD-020 requirements. They are halogen-free,
RoHS compliant and 100% matte tin (Sn) plating that are
suitable for use in SnPb or Pb-free soldering processes.
† Operate from 5V or 12V Supply Voltage
† 3.3V to 12V VIN Input Range
† 0.6 VREF with 1.5% Accuracy
† Output Range from VREF to 80% of VIN
† Support Tracking Mode and Stand Alone Mode
Operation
† Simple Single-Loop Control Design
† Voltage-Mode PWM Control
† Fast Transient Response
† High-Bandwidth Error Amplifier
† 0% to 80% Duty Cycle
† Lossless, Programmable Overcurrent Protection
† Uses Lower MOSFET RDS(ON)
† 200/300 kHz Fixed Frequency Oscillator
† Internal Soft Start
† Integrated Bootstrap Diode
† RoHS Compliant and Halogen Free
Applications
† Power Supplies for Microprocessors or
Subsystem Power Supplies
† Cable Modems, Set Top Boxes, and xDSL
Modems
† Industrial Power Supplies; General Purpose
Supplies
† 5V or 12V Input DC-DC Regulators
† Low Voltage Distributed Power Supplies
Pin Configuration & Typical Application Circuit
BOOT
UGATE
GND
LGATE
18
27
36
45
SOP-8
PHASE
REFIN
FB
VCC
BOOT
UGATE
GND
LGATE
18
27
GND
36
45
PSOP-8
PHASE
REFIN
FB
VCC
Reference
Input
Disable
Enable
REFIN
7
VCC
5
BOOT
1
UGATE
2
8 PHASE
FB
6
Option
4 LGATE
3
GND
uPI Semiconductor Corp., http://www.upi-semi.com
Rev. F00, File Name: uP6103-DS-F0000
VIN
VOUT
1






uP6103 Datasheet, Funktion
uP6103
Absolute Maximum Rating
Supply Input Voltage, VCC (Note 1) ------------------------------------------------------------------------------------------------ -0.3V to +15V
PHASE to GND
DC ------------------------------------------------------------------------------------------------------------------------------------- -5V to 15V
< 200ns ---------------------------------------------------------------------------------------------------------------------------- -10V to 30V
BOOT to GND
DC ------------------------------------------------------------------------------------------------------------------------- -0.3V to PHASE +15V
< 200ns -------------------------------------------------------------------------------------------------------------------------- -0.3V to 42V
LGATE to GND
DC ------------------------------------------------------------------------------------------------------------------------------------- -1V to 15V
< 200ns ---------------------------------------------------------------------------------------------------------------------------- -5V to 30V
UGATE to PHASE
DC ------------------------------------------------------------------------------------------------------------------------------------- -0.3V to 15V
< 200ns ---------------------------------------------------------------------------------------------------------------------------- -2V to 20V
Input, Output or I/O Voltage ---------------------------------------------------------------------------------------------------------- -0.3V to +6V
Storage Temperature Range ------------------------------------------------------------------------------------------------------------- -65OC to +150OC
Junction Temperature ------------------------------------------------------------------------------------------------------------------------------------ 150OC
Lead Temperature (Soldering, 10 sec) ------------------------------------------------------------------------------------------------------------ 260OC
ESD Rating (Note 2)
HBM (Human Body Mode) --------------------------------------------------------------------------------------------------------------------- 2kV
MM (Machine Mode) ----------------------------------------------------------------------------------------------------------------------------- 200V
Thermal Information
Package Thermal Resistance (Note 3)
SOP-8 θJA---------------------------------------------------------------------------------------------------------------------------------- 160°C/W
SOP-8 θJC ----------------------------------------------------------------------------------------------------------------------------------- 39°C/W
PSOP-8 θJA---------------------------------------------------------------------------------------------------------------------------------- 50°C/W
PSOP-8 θJC------------------------------------------------------------------------------------------------------------------------------------ 5°C/W
Power Dissipation, PD @ TA = 25°C
SOP-8 ------------------------------------------------------------------------------------------------------------------------------------------- 0.625W
PSOP-8 ------------------------------------------------------------------------------------------------------------------------------------------------- 2W
Recommended Operation Conditions
Operating Junction Temperature Range (Note 4) ------------------------------------------------------------------------ -40°C to +125°C
Operating Ambient Temperature Range -------------------------------------------------------------------------------------- -40°C to +85°C
Supply Input Voltage, VCC ---------------------------------------------------------------------------------------------------------------- +4.5V to 13.2V
Electrical Characteristics
(VCC = 12V, TA = 25OC, unless otherwise specified)
Parameter
Symbol Test Conditions
Min Typ Max Units
Supply Input
Supply Voltage
Supply Current
Quiescent Supply Current
Power Input Voltage
Power On Reset
VC C
IC C
IC C _ Q
VIN
UGATE, LGATE Open; VC C = 12V, Switching
VFB = 0.7V, No Switching
4.5 -- 13.2 V
-- 3 -- mA
-- 2 -- mA
3.0 -- 13.2 V
POR Threshold
POR Hysteresis
VC C RTH
VC C HYS
VC C rising
4.0 4.2 4.4
-- 0.5 --
V
V
uPI Semiconductor Corp., http://www.upi-semi.com
Rev. F00, File Name: uP6103-DS-F0000
6

6 Page









uP6103 pdf, datenblatt
uP6103
Application Information
Maximum current ratings of the inductor are generally
specified in two methods: permissible DC current and
saturation current. Permissible DC current is the allowable
DC current that causes 40OC temperature raise. The
saturation current is the allowable current that causes 10%
inductance loss. Make sure that the inductor will not
saturate over the operation conditions including temperature
range, input voltage range, and maximum output current.
The size requirements refer to the area and height
requirement for a particular design. For better efficiency,
choose a low DC resistance inductor. DCR is usually
inversely proportional to size.
Different core materials and shapes will change the size/
current and price/current relationship of an inductor. Toroid
or shielded pot cores in ferrite or permalloy materials are
small and don’t radiate much energy, but generally cost
more than powdered iron core inductors with similar electrical
characteristics. The choice of which style inductor to use
often depends more on the price vs. size requirements
and any radiated field/EMI requirements.
Input Capacitor Selection
The synchronous-rectified buck converter draws pulsed
current with sharp edges from the input capacitor resulting
in ripples and spikes at the input supply voltage. Use a
mix of input bypass capacitors to control the voltage
overshoot across the MOSFETs. Use small ceramic
capacitors for high frequency decoupling and bulk capacitors
to supply the current needed each time upper MOSFET
turns on. Place the small ceramic capacitors physically
close to the MOSFETs and between the drain of upper
MOSET and the source of lower MOSFET to avoid the
stray inductance along the connection trace.
The important parameters for the bulk input capacitor are
the voltage rating and the RMS current rating. For reliable
operation, select the bulk capacitor with voltage and current
ratings above the maximum input voltage and largest RMS
current required by the circuit. The capacitor voltage rating
should be at least 1.25 times greater than the maximum
input voltage and a voltage rating of 1.5 times is a
conservative guideline. The RMS current rating requirement
for the input capacitor of a buck converter is calculated as:
IIN(RMS) = IOUT(MAX)
VOUT (VIN VOUT )
VIN
This formula has a maximum at VIN = 2VOUT, where IIN(RMS)
= IOUT(RMS)/2. This simple worst-case condition is
commonly used for design because even significant
deviations do not offer much relief. Note that the capacitor
manufacturer’s ripple current ratings are often based on
2000 hours of life. This makes it advisable to further derate
the capacitor, or choose a capacitor rated at a higher
temperature than required. Always consult the manufacturer
if there is any question.
For a through-hole design, several electrolytic capacitors
may be needed. For surface mount designs, solid tantalum
capacitors can also be used, but caution must be exercised
with regard to the capacitor surge current rating. These
capacitors must be capable of handling the surge-current
at power-up. Some capacitor series available from reputable
manufacturers are surge current tested.
Output Capacitor Selection
An output capacitor is required to filter the output and supply
the load transient current. The selection of COUT is primarily
determined by the ESR required to minimize voltage ripple
and load step transients. The output ripple VOUT is
approximately bounded by:
VOUT
IL (ESR +
1
8 × fOSC × COUT
)
Since IL increases with input voltage, the output ripple is
highest at maximum input voltage. Typically, once the ESR
requirement is satisfied, the capacitance is adequate for
filtering and has the necessary RMS current rating. Multiple
capacitors placed in parallel may be needed to meet the
ESR and RMS current handling requirements. Dry tantalum,
special polymer, aluminum electrolytic and ceramic
capacitors are all available in surface mount packages.
Special polymer capacitors offer very low ESR but have
lower capacitance density than other types.
The load transient requirements are a function of the slew
rate (di/dt) and the magnitude of the transient load current.
These requirements are generally met with a mix of
capacitors and careful layout. Modern components and
loads are capable of producing transient load rates above
1A/ns. High frequency capacitors initially supply the
transient and slow the current load rate seen by the bulk
capacitors. The bulk filter capacitor values are generally
determined by the ESR (Effective Series Resistance) and
voltage rating requirements rather than actual capacitance
requirements.
High frequency decoupling capacitors should be placed as
close to the power pins of the load as physically possible.
Be careful not to add inductance in the circuit board wiring
that could cancel the usefulness of these low inductance
components. Consult with the manufacturer of the load on
specific decoupling requirements.
uPI Semiconductor Corp., http://www.upi-semi.com
Rev. F00, File Name: uP6103-DS-F0000
12

12 Page





SeitenGesamt 15 Seiten
PDF Download[ uP6103 Schematic.PDF ]

Link teilen




Besondere Datenblatt

TeilenummerBeschreibungHersteller
UP61015V/12V Synchronous-Rectified Buck ControlleruPI Semiconductor
uPI Semiconductor
uP61035V/12V Synchronous-Rectified Buck ControlleruPI Semiconductor
uPI Semiconductor
UP61095V/12V Synchronous-Rectified Buck ControlleruPI Semiconductor
uPI Semiconductor

TeilenummerBeschreibungHersteller
CD40175BC

Hex D-Type Flip-Flop / Quad D-Type Flip-Flop.

Fairchild Semiconductor
Fairchild Semiconductor
KTD1146

EPITAXIAL PLANAR NPN TRANSISTOR.

KEC
KEC


www.Datenblatt-PDF.com       |      2020       |      Kontakt     |      Suche