DataSheet.es    


PDF MX29LV081 Data sheet ( Hoja de datos )

Número de pieza MX29LV081
Descripción 8M-Bit CMOS Single Voltage 3V Only Equal Sector Flash Memory
Fabricantes Macronix 
Logotipo Macronix Logotipo



Hay una vista previa y un enlace de descarga de MX29LV081 (archivo pdf) en la parte inferior de esta página.


Total 30 Páginas

No Preview Available ! MX29LV081 Hoja de datos, Descripción, Manual

ADVANCE INFORMATION
MX29LV081
8M-BIT [1M x 8] CMOS SINGLE VOLTAGE
3V ONLY EQUAL SECTOR FLASH MEMORY
FEATURES
• Extended single - supply voltage range 2.7V to 3.6V
• 1,048,576 x 8
• Single power supply operation
- 3.0V only operation for read, erase and program
operation
• Fast access time: 70/90ns
• Low power consumption
- 20mA maximum active current
- 0.2uA typical standby current
• Command register architecture
- Byte/word Programming (7us/12us typical)
- Sector Erase (Sector structure 64K-Byte x16)
• Auto Erase (chip & sector) and Auto Program
- Automatically erase any combination of sectors with
Erase Suspend capability.
- Automatically program and verify data at specified
address
• Erase suspend/Erase Resume
- Suspends sector erase operation to read data from,
or program data to, any sector that is not being erased,
then resumes the erase.
• Status Reply
- Data polling & Toggle bit for detection of program and
erase operation completion.
• Ready/Busy pin (RY/BY)
- Provides a hardware method of detecting program or
erase operation completion.
• Sector protection
- Hardware method to disable any combination of
sectors from program or erase operations
- Any combination of sectors can be erased with erase
suspend/resume function.
- Tempoary sector unprotect allows code changes in
previously locked sectors.
• 100,000 minimum erase/program cycles
• Latch-up protected to 100mA from -1V to VCC+1
• Low VCC write inhibit is equal to or less than 2.3V
• Package type:
- 40-pin TSOP
• Compatibility with JEDEC standard
- Pinout and software compatible with single-power
supply Flash
GENERAL DESCRIPTION
The MX29LV081 is a 8-mega bit Flash memory orga-
nized as 1M bytes of 8 bits. MXIC's Flash memories
offer the most cost-effective and reliable read/write non-
volatile random access memory. The MX29LV081 is
packaged in 40-pin TSOP. It is designed to be repro-
grammed and erased in system or in standard EPROM
programmers.
The standard MX29LV081 offers access time as fast as
70ns, allowing operation of high-speed microprocessors
without wait states. To eliminate bus contention, the
MX29LV081 has separate chip enable (CE) and output
enable (OE) controls.
MXIC's Flash memories augment EPROM functionality
with in-circuit electrical erasure and programming. The
MX29LV081 uses a command register to manage this
functionality. The command register allows for 100%
TTL level control inputs and fixed power supply levels
during erase and programming, while maintaining maxi-
mum EPROM compatibility.
MXIC Flash technology reliably stores memory contents
even after 100,000 erase and program cycles. The MXIC
cell is designed to optimize the erase and programming
mechanisms. In addition, the combination of advanced
tunnel oxide processing and low internal electric fields
for erase and program operations produces reliable cy-
cling. The MX29LV081 uses a 2.7V~3.6V VCC supply
to perform the High Reliability Erase and auto Program/
Erase algorithms.
The highest degree of latch-up protection is achieved
with MXIC's proprietary non-epi process. Latch-up pro-
tection is proved for stresses up to 100 milliamps on
address and data pin from -1V to VCC + 1V.
P/N:PM0717
REV. 0.5, MAR. 07, 2001
1

1 page




MX29LV081 pdf
MX29LV081
AUTOMATIC PROGRAMMING
The MX29LV081 is byte programmable using the Auto-
matic Programming algorithm. The Automatic Program-
ming algorithm makes the external system do not need
to have time out sequence nor to verify the data pro-
grammed. The typical chip programming time at room
temperature of the MX29LV081 is less than 10 seconds.
AUTOMATIC PROGRAMMING ALGORITHM
MXIC's Automatic Programming algorithm requires the
user to only write program set-up commands (including
2 unlock write cycle and A0H) and a program command
(program data and address). The device automatically
times the programming pulse width, provides the pro-
gram verification, and counts the number of sequences.
The device provides an unlock bypass mode with faster
programming. Only two write cycles are needed to pro-
gram a word or byte, instead of four. A status bit similar
to DATA polling and a status bit toggling between con-
secutive read cycles, provide feedback to the user as
to the status of the programming operation. Refer to write
operation status, table 7, for more information on these
status bits.
AUTOMATIC SECTOR ERASE
The MX29LV081 is sector(s) erasable using MXIC's Auto
Sector Erase algorithm. The Automatic Sector Erase
algorithm automatically programs the specified sector(s)
prior to electrical erase. The timing and verification of
electrical erase are controlled internally within the de-
vice. An erase operation can erase one sector, multiple
sectors, or the entire device.
AUTOMATIC ERASE ALGORITHM
MXIC's Automatic Erase algorithm requires the user to
write commands to the command register using stan-
dard microprocessor write timings. The device will auto-
matically pre-program and verify the entire array. Then
the device automatically times the erase pulse width,
provides the erase verification, and counts the number
of sequences. A status bit toggling between consecu-
tive read cycles provides feedback to the user as to the
status of the erasing operation.
Register contents serve as inputs to an internal state-
machine which controls the erase and programming cir-
cuitry. During write cycles, the command register inter-
nally latches address and data needed for the program-
ming and erase operations. During a system write cycle,
addresses are latched on the falling edge, and data are
latched on the rising edge of WE or CE, whichever hap-
pens first.
MXIC's Flash technology combines years of EPROM
experience to produce the highest levels of quality, reli-
ability, and cost effectiveness. The MX29LV081 electri-
cally erases all bits simultaneously using Fowler-
Nordheim tunneling. The bytes are programmed by us-
ing the EPROM programming mechanism of hot elec-
tron injection.
During a program cycle, the state-machine will control
the program sequences and command register will not
respond to any command set. During a Sector Erase
cycle, the command register will only respond to Erase
Suspend command. After Erase Suspend is completed,
the device stays in read mode. After the state machine
has completed its task, it will allow the command regis-
ter to respond to its full command set.
AUTOMATIC CHIP ERASE
The entire chip is bulk erased using 10 ms erase pulses
according to MXIC's Automatic Chip Erase algorithm.
Typical erasure at room temperature is accomplished in
less than 25 second. The Automatic Erase algorithm
automatically programs the entire array prior to electri-
cal erase. The timing and verification of electrical erase
are controlled internally within the device.
AUTOMATIC SELECT
The auto select mode provides manufacturer and de-
vice identification, and sector protection verification,
through identifier codes output on Q7~Q0.This mode is
mainly adapted for programming equipment on the de-
vice to be programmed with its programming algorithm.
When programming by high voltage method, automatic
select mode requires VID (11.5V to 12.5V) on address
pin A9 and other address pin A6, A1 and A0 as referring
to Table 3. In addition, to access the automatic select
codes in-system, the host can issue the automatic se-
P/N:PM0717
REV. 0.5, MAR. 07, 2001
5

5 Page





MX29LV081 arduino
MX29LV081
TABLE 6. SILICON ID CODE
Pins
Manufacture code
Device code
Sector Protection
Verification
A0 A1 Q7 Q6 Q5 Q4 Q3 Q2 Q1 Q0 Code(Hex)
VIL VIL 1 1 0 0 0 0 1 0 C2H
VIH VIL 1 1 0 1 1 0 1 0 DAH
X VIH 0 0 0 0 0 0 0 1 01H (Protected)
X VIH 0 0 0 0 0 0 0 0 00H (Unprotected)
READING ARRAY DATA
The device is automatically set to reading array data
after device power-up. No commands are required to
retrieve data.The device is also ready to read array data
after completing an Automatic Program or Automatic
Erase algorithm.
After the device accepts an Erase Suspend command,
the device enters the Erase Suspend mode. The sys-
tem can read array data using the standard read tim-
ings, except that if it reads at an address within erase-
suspended sectors, the device outputs status data. After
completing a programming operation in the Erase
Suspend mode, the system may once again read array
data with the same exception. See rase Suspend/Erase
Resume Commands” for more infor-mation on this mode.
The system must issue the reset command to re-en-
able the device for reading array data if Q5 goes high, or
while in the autoselect mode. See the "Reset Command"
section, next.
RESET COMMAND
Writing the reset command to the device resets the
device to reading array data. Address bits are don't care
for this command.
The reset command may be written between the se-
quence cycles in an erase command sequence before
erasing begins. This resets the device to reading array
data. Once erasure begins, however, the device ignores
reset commands until the operation is complete.
The reset command may be written between the se-
quence cycles in a program command sequence be-fore
programming begins. This resets the device to reading
array data (also applies to programming in Erase
Suspend mode). Once programming begins,however, the
device ignores reset commands until the operation is
complete.
The reset command may be written between the se-
quence cycles in an SILICON ID READ command
sequence. Once in the SILICON ID READ mode, the
reset command must be written to return to reading array
data (also applies to SILICON ID READ during Erase
Suspend).
If Q5 goes high during a program or erase operation,
writing the reset command returns the device to read-
ing
array data (also applies during Erase Suspend).
P/N:PM0717
REV. 0.5, MAR. 07, 2001
11

11 Page







PáginasTotal 30 Páginas
PDF Descargar[ Datasheet MX29LV081.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
MX29LV0818M-Bit CMOS Single Voltage 3V Only Equal Sector Flash MemoryMacronix
Macronix
MX29LV081B8M-Bit CMOS Flash MemoryMacronix
Macronix

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar