DataSheet.es    


PDF AD73322 Data sheet ( Hoja de datos )

Número de pieza AD73322
Descripción Low Cost/ Low Power CMOS General-Purpose Dual Analog Front End
Fabricantes Analog Devices 
Logotipo Analog Devices Logotipo



Hay una vista previa y un enlace de descarga de AD73322 (archivo pdf) en la parte inferior de esta página.


Total 30 Páginas

No Preview Available ! AD73322 Hoja de datos, Descripción, Manual

a Low Cost, Low Power CMOS
General-Purpose Dual Analog Front End
FEATURES
Two 16-Bit A/D Converters
Two 16-Bit D/A Converters
Programmable Input/Output Sample Rates
78 dB ADC SNR
77 dB DAC SNR
64 kS/s Maximum Sample Rate
–90 dB Crosstalk
Low Group Delay (25 s Typ per ADC Channel,
50 s Typ per DAC Channel)
Programmable Input/Output Gain
Flexible Serial Port which Allows Up to Four Dual
Codecs to be Connected in Cascade Giving Eight
I/O Channels
Single (+2.7 V to +5.5 V) Supply Operation
73 mW Typ Power Consumption at 3.0 V
On-Chip Reference
28-Lead SOIC and 44-Lead LQFP Packages
APPLICATIONS
General Purpose Analog I/O
Speech Processing
Cordless and Personal Communications
Telephony
Active Control of Sound and Vibration
Data Communications
Wireless Local Loop
GENERAL DESCRIPTION
The AD73322 is a dual front-end processor for general-purpose
applications including speech and telephony. It features two
16-bit A/D conversion channels and two 16-bit D/A conversion
channels. Each channel provides 77␣ dB signal-to-noise ratio
over a voiceband signal bandwidth. It also features an input-to-
output gain network in both the analog and digital domains.
This is featured on both codecs and can be used for impedance
matching or scaling when interfacing to Subscriber Line Inter-
face Circuits (SLICs).
The AD73322 is particularly suitable for a variety of applica-
tions in the speech and telephony area, including low bit rate,
high quality compression, speech enhancement, recognition, and
synthesis. The low group delay characteristic of the part makes
it suitable for single or multichannel active control applications.
VFBP1
VINP1
VINN1
VFBN1
VOUTP1
VOUTN1
REFOUT
REFCAP
VFBP2
VINP2
VINN2
VFBN2
VOUTP2
VOUTN2
AD73322
FUNCTIONAL BLOCK DIAGRAM
AVDD1 AVDD2
DVDD
AD73322
ADC CHANNEL 1
SDI
SDIFS
DAC CHANNEL 1
REFERENCE
SPORT
SCLK
SE
RESET
ADC CHANNEL 2
MCLK
DAC CHANNEL 2
SDOFS
SDO
AGND1 AGND2 DGND
The A/D and D/A conversion channels feature programmable
input/output gains with ranges of 38 dB and 21 dB respectively.
An on-chip reference voltage is included to allow single-supply
operation. This reference is programmable to accommodate
either 3 V or 5 V operation.
The sampling rate of the codecs is programmable with four
separate settings, offering 64 kHz, 32 kHz, 16 kHz and 8 kHz
sampling rates (from a master clock of 16.384 MHz).
A serial port (SPORT) allows easy interfacing of single or cas-
caded devices to industry standard DSP engines. The SPORT
transfer rate is programmable to allow interfacing to both fast
and slow DSP engines.
The AD73322 is available in 28-lead SOIC and 44-lead LQFP
packages.
REV. B
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties
which may result from its use. No license is granted by implication or
otherwise under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700 World Wide Web Site: http://www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 2000

1 page




AD73322 pdf
AD73322
SPECIFICATIONS1 (AVDD = +5 V ؎ 10%; DVDD = +5 V ؎ 10%; DGND = AGND = 0 V, fDMCLK = 16.384 MHz, fSAMP = 64 kHz;
TA = TMIN to TMAX, unless otherwise noted)
Parameter
AD73322A
Min Typ
Max Units Test Conditions/Comments
REFERENCE
REFCAP
Absolute Voltage, VREFCAP
REFCAP TC
REFOUT
Typical Output Impedance
Absolute Voltage, VREFOUT
Minimum Load Resistance
Maximum Load Capacitance
1.2
2.4
50
130
1.2
2.4
2
V 5VEN = 0
V 5VEN = 1
ppm/°C 0.1 µF Capacitor Required from
REFCAP to AGND2
V 5VEN = 0, Unloaded
V 5VEN = 1, Unloaded
k5VEN = 1
100 pF
INPUT AMPLIFIER
Offset
Maximum Output Swing
Feedback Resistance
Feedback Capacitance
± 1.0
3.156
50
100
mV
V Max Output Swing = (3.156/2.4) × VREFCAP
kfC = 32 kHz
pF
ANALOG GAIN TAP
Gain at Maximum Setting
Gain at Minimum Setting
Gain Resolution
Gain Accuracy
Settling Time
Delay
ADC SPECIFICATIONS
Maximum Input Range at VIN2, 3
Nominal Reference Level at VIN
(0 dBm0)
Absolute Gain
PGA = 0 dB
PGA = 38 dB
Gain Tracking Error
Signal to (Noise + Distortion)
PGA = 0 dB
PGA = 38 dB
Total Harmonic Distortion
PGA = 0 dB
PGA = 38 dB
Intermodulation Distortion
Idle Channel Noise
Crosstalk ADC-to-DAC
ADC-to-ADC
DC Offset
Power Supply Rejection
Group Delay4, 5
Input Resistance at PGA2, 4, 6
+1
–1
5
±1
1.0
0.5
3.156
3.17
2.1908
0
0.4
–0.7
± 0.1
78
78
57
56
–84
–70
–65
–71
–100
–100
–70
+10
–65
25
20
Bits
%
µs
µs
V p-p
dBm
V p-p
dBm
dB
dB
dB
dB
dB
dB
dB
dB
dB
dB
dBm0
dB
dB
dB
mV
dB
µs
k
Gain Step Size = 0.0625
Output Unloaded
Tap Gain Change of –FS to +FS
5VEN = 1
Measured Differentially
Max Input Swing = (3.156/2.4) × VREFCAP
Measured Differentially
1.0 kHz, 0 dBm0
1.0 kHz, 0 dBm0
1.0 kHz, +3 dBm0 to –50 dBm0
Refer to Figure 7
300 Hz to 3400 Hz; fSAMP = 64 kHz
300 Hz to 3400 Hz; fSAMP = 8 kHz
0 Hz to fSAMP/2; fSAMP = 64 kHz
300 Hz to 3400 Hz; fSAMP = 64 kHz
300 Hz to 3400 Hz; fSAMP = 64 kHz
300 Hz to 3400 Hz; fSAMP = 64 kHz
PGA = 0 dB
PGA = 0 dB
ADC Input Signal Level: 1.0 kHz, 0 dBm0
DAC Input at Idle
ADC1 Input Signal Level: 1.0 kHz, 0 dBm0
ADC2 Input at Idle. Input Amplifiers Bypassed
Input Amplifiers Included in Channel
PGA = 0 dB
Input Signal Level at AVDD and DVDD
Pins: 1.0 kHz, 100 mV p-p Sine Wave
64 kHz Output Sample Rate
Input Amplifiers Bypassed
REV. B
–5–

5 Page





AD73322 arduino
Mnemonic
VINP1
VFBP1
VINN1
VFBN1
REFOUT
REFCAP
AVDD2
AGND2
DGND
DVDD
RESET
SCLK
MCLK
SDO
SDOFS
SDIFS
SDI
SE
AGND1
AVDD1
VOUTP2
VOUTN2
VOUTP1
VOUTN1
VINP2
VFBP2
VINN2
VFBN2
AD73322
PIN FUNCTION DESCRIPTIONS
Function
Analog Input to the inverting input amplifier on Channel 1’s positive input.
Feedback Connection from the output of the inverting amplifier on Channel 1’s positive input. When the input
amplifiers are bypassed, this pin allows direct access to the positive input of Channel 1’s sigma-delta modulator.
Analog Input to the inverting input amplifier on Channel 1’s negative input.
Feedback connection from the output of the inverting amplifier on Channel 1’s negative input. When the input
amplifiers are bypassed, this pin allows direct access to the negative input of Channel 1’s sigma-delta modulator.
Buffered Reference Output, which has a nominal value of 1.2 V or 2.4 V, the value being dependent on the status
of Bit 5VEN (CRC:7). As the reference is common to the two codec units, the reference value is set by the wired
OR of the CRC:7 bits in Control Register C of each channel.
A bypass capacitor to AGND2 of 0.1 µF is required for the on-chip reference. The capacitor should be fixed to this
pin.
Analog Power Supply Connection.
Analog Ground/Substrate Connection2.
Digital Ground/Substrate Connection.
Digital Power Supply Connection.
Active Low Reset Signal. This input resets the entire chip, resetting the control registers and clearing the digital
circuitry.
Serial Clock Output whose rate determines the serial transfer rate to/from the codec. It is used to clock data or
control information to and from the serial port (SPORT). The frequency of SCLK is equal to the frequency of the
master clock (MCLK) divided by an integer number—this integer number being the product of the external mas-
ter clock rate divider and the serial clock rate divider.
Master Clock Input. MCLK is driven from an external clock signal.
Serial Data Output. Both data and control information may be output on this pin and are clocked on the positive
edge of SCLK. SDO is in three-state when no information is being transmitted and when SE is low.
Framing Signal Output for SDO Serial Transfers. The frame sync is one bit wide and is active one SCLK period
before the first bit (MSB) of each output word. SDOFS is referenced to the positive edge of SCLK. SDOFS is in
three-state when SE is low.
Framing Signal Input for SDI Serial Transfers. The frame sync is one bit wide and is valid one SCLK period be-
fore the first bit (MSB) of each input word. SDIFS is sampled on the negative edge of SCLK and is ignored when
SE is low.
Serial Data Input. Both data and control information may be input on this pin and are clocked on the negative
edge of SCLK. SDI is ignored when SE is low.
SPORT Enable. Asynchronous input enable pin for the SPORT. When SE is set low by the DSP, the output pins
of the SPORT are three-stated and the input pins are ignored. SCLK is also disabled internally in order to decrease
power dissipation. When SE is brought high, the control and data registers of the SPORT are at their original
values (before SE was brought low); however, the timing counters and other internal registers are at their reset
values.
Analog Ground/Substrate Connection.
Analog Power Supply Connection.
Analog Output from the Positive Terminal of Output Channel 2.
Analog Output from the Negative Terminal of Output Channel 2.
Analog Output from the Positive Terminal of Output Channel 1.
Analog Output from the Negative Terminal of Output Channel 1.
Analog Input to the inverting input amplifier on Channel 2’s positive input.
Feedback connection from the output of the inverting amplifier on Channel 2’s positive input. When the input
amplifiers are bypassed, this pin allows direct access to the positive input of Channel 2’s sigma-delta modulator.
Analog Input to the inverting input amplifier on Channel 2’s negative input.
Feedback connection from the output of the inverting amplifier on Channel 2’s negative input. When the input
amplifiers are bypassed, this pin allows direct access to the negative input of Channel 2’s sigma-delta modulator.
REV. B
–11–

11 Page







PáginasTotal 30 Páginas
PDF Descargar[ Datasheet AD73322.PDF ]




Hoja de datos destacado

Número de piezaDescripciónFabricantes
AD73322Low Cost/ Low Power CMOS General-Purpose Dual Analog Front EndAnalog Devices
Analog Devices
AD73322LLow Cost/ Low Power CMOS General-Purpose Dual Analog Front EndAnalog Devices
Analog Devices

Número de piezaDescripciónFabricantes
SLA6805M

High Voltage 3 phase Motor Driver IC.

Sanken
Sanken
SDC1742

12- and 14-Bit Hybrid Synchro / Resolver-to-Digital Converters.

Analog Devices
Analog Devices


DataSheet.es es una pagina web que funciona como un repositorio de manuales o hoja de datos de muchos de los productos más populares,
permitiéndote verlos en linea o descargarlos en PDF.


DataSheet.es    |   2020   |  Privacy Policy  |  Contacto  |  Buscar