Datenblatt-pdf.com

AD204 Schematic ( PDF Datasheet ) - Analog Devices

Teilenummer AD204
Beschreibung Low Cost / Miniature Isolation Amplifiers
Hersteller Analog Devices
Logo Analog Devices Logo 



Gesamt 12 Seiten
AD204 Datasheet, Funktion
a
Low Cost, Miniature
Isolation Amplifiers
AD202/AD204
FEATURES
Small Size: 4 Channels/lnch
Low Power: 35 mW (AD204)
High Accuracy: ؎0.025% Max Nonlinearity (K Grade)
High CMR: 130 dB (Gain = 100 V/V)
Wide Bandwidth: 5 kHz Full-Power (AD204)
High CMV Isolation: ؎2000 V pk Continuous (K Grade)
(Signal and Power)
Isolated Power Outputs
Uncommitted Input Amplifier
APPLICATIONS
Multichannel Data Acquisition
Current Shunt Measurements
Motor Controls
Process Signal Isolation
High Voltage Instrumentation Amplifier
GENERAL DESCRIPTION
The AD202 and AD204 are general purpose, two-port, trans-
former-coupled isolation amplifiers that may be used in a broad
range of applications where input signals must be measured,
processed, and/or transmitted without a galvanic connection.
These industry standard isolation amplifiers offer a complete
isolation function, with both signal and power isolation provided
for in a single compact plastic SIP or DIP style package. The
primary distinction between the AD202 and the AD204 is that
the AD202 is powered directly from a 15 V dc supply while the
AD204 is powered by an externally supplied clock, such as the
recommended AD246 Clock Driver.
The AD202 and AD204 provide total galvanic isolation between
the input and output stages of the isolation amplifier through
the use of internal transformer-coupling. The functionally com-
plete AD202 and AD204 eliminate the need for an external,
user-supplied dc-to-dc converter. This permits the designer
to minimize the necessary circuit overhead and consequently
reduce the overall design and component costs.
The design of the AD202 and AD204 emphasizes maximum
flexibility and ease of use, including the availability of an
uncommitted op amp on the input stage. They feature a bipolar
± 5 V output range, an adjustable gain range of from 1V/V to
100 V/V, ± 0.025% max nonlinearity (K grade), 130 dB of
CMR, and the AD204 consumes a low 35 mW of power.
The functional block diagrams can be seen in Figures 1a and 1b.
PRODUCT HIGHLIGHTS
The AD202 and AD204 are full-featured isolators offering
numerous benefits to the user:
Small Size: The AD202 and AD204 are available in SIP and
DIP form packages. The SIP package is just 0.25" wide, giving
the user a channel density of four channels per inch. The isolation
barrier is positioned to maximize input to output spacing. For
applications requiring a low profile, the DIP package provides a
height of just 0.350".
High Accuracy: With a maximum nonlinearity of ± 0.025%
for the AD202K/AD204K (± 0.05% for the AD202J/AD204J)
and low drift over temperature, the AD202 and AD204 provide
high isolation without loss of signal integrity.
Low Power: Power consumption of 35 mW (AD204) and
75 mW (AD202) over the full signal range makes these isolators
ideal for use in applications with large channel counts or tight
power budgets.
Wide Bandwidth: The AD204’s full-power bandwidth of 5 kHz
makes it useful for wideband signals. It is also effective in appli-
cations like control loops, where limited bandwidth could result
in instability.
Excellent Common-Mode Performance: The AD202K/
AD204K provide ± 2000 V pk continuous common-mode isola-
tion, while the AD202J/AD204J provide ± 1000 V pk continuous
common-mode isolation. All models have a total common-mode
input capacitance of less than 5 pF inclusive of power isolation.
This results in CMR ranging from 130 dB at a gain of 100 dB to
104 dB (minimum at unity gain) and very low leakage current
(2 mA maximum).
Flexible Input: An uncommitted op amp is provided at the
input of all models. This provides buffering and gain as required,
and facilitates many alternative input functions including filtering,
summing, high voltage ranges, and current (transimpedance) input.
Isolated Power: The AD204 can supply isolated power of
± 7.5 V at 2 mA. This is sufficient to operate a low-drift input
preamp, provide excitation to a semiconductor strain gage, or
power any of a wide range of user-supplied ancillary circuits.
The AD202 can supply ± 7.5 V at 0.4 mA, which is sufficient to
operate adjustment networks or low power references and op
amps, or to provide an open-input alarm.
REV. D
Information furnished by Analog Devices is believed to be accurate and
reliable. However, no responsibility is assumed by Analog Devices for its
use, nor for any infringements of patents or other rights of third parties that
may result from its use. No license is granted by implication or otherwise
under any patent or patent rights of Analog Devices.
One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
Tel: 781/329-4700
www.analog.com
Fax: 781/326-8703
© Analog Devices, Inc., 2002






AD204 Datasheet, Funktion
AD202/AD204
Adjustments. When gain and zero adjustments are needed, the
circuit details will depend on whether adjustments are to be made
at the isolator input or output, and (for input adjustments) on
the input circuit used. Adjustments are usually best done on the
input side, because it is better to null the zero ahead of the gain,
and because gain adjustment is most easily done as part of the
gain-setting network. Input adjustments are also to be preferred
when the pots will be near the input end of the isolator (to mini-
mize common-mode strays). Adjustments on the output side
might be used if pots on the input side would represent a hazard
due to the presence of large common-mode voltages during
adjustment.
Figure 8a shows the input-side adjustment connections for use
with the noninverting connection of the input amplifier. The
zero adjustment circuit injects a small adjustment voltage in series
with the low side of the signal source. (This will not work if the
source has another current path to input common or if current
flows in the signal source LO lead). Since the adjustment volt-
age is injected ahead of the gain, the values shown will work for
any gain. Keep the resistance in series with input LO below a
few hundred ohms to avoid CMR degradation.
47.5k
5k
GAIN
2k
VS RG
AD202
OR
AD204
200
50k
100k
ZERO
+7.5
–7.5
Figure 8a. Adjustments for Noninverting Connection of
Op Amp
Also shown in Figure 8a is the preferred means of adjusting the
gain-setting network. The circuit shown gives a nominal RF of
50 kW, and will work properly for gains of ten or greater. The
adjustment becomes less effective at lower gains (its effect is
halved at G = 2) so that the pot will have to be a larger fraction
of the total RF at low gain. At G = 1 (follower) the gain cannot
be adjusted downward without compromising input resistance;
it is better to adjust gain at the signal source or after the output.
Figure 8b shows adjustments for use with inverting input cir-
cuits. The zero adjustment nulls the voltage at the summing
node. This method is preferable to current injection because it is
less affected by subsequent gain adjustment. Gain adjustment is
again done in the feedback; but in this case it will work all the
way down to unity gain (and below) without alteration.
5k
GAIN
RS 47.5k
AD202
OR
AD204
VS
200
50k
100k
ZERO
+7.5
–7.5
Figure 8b. Adjustments for Summing or Current Input
Figure 9 shows how zero adjustment is done at the output by
taking advantage of the semi-floating output port. The range of
this adjustment will have to be increased at higher gains; if that
is done, be sure to use a suitably stable supply voltage for the
pot circuit.
There is no easy way to adjust gain at the output side of the
isolator itself. If gain adjustment must be done on the output
side, it will have to be in a following circuit such as an output
buffer or filter.
AD202
OR
AD204
VO +15V
200
50k
100k
ZERO
0.1F
–15V
Figure 9. Output-Side Zero Adjustment
Common-Mode Performance. Figures 10a and 10b show
how the common-mode rejection of the AD202 and AD204
varies with frequency, gain, and source resistance. For these
isolators, the significant resistance will normally be that in the
path from the source of the common-mode signal to IN COM.
The AD202 and AD204 also perform well in applications re-
quiring rejection of fast common-mode steps, as described in
the Applications section.
180
G = 100
160 G = 1
140 RLO = 0
120 RLO = 500
100 RLO = 0
80 RLO = 10k
60 RLO = 10k
40
10
20
50 60 100 200 500
FREQUENCY – Hz
1k
Figure 10a. AD204
2k
5k
(NOTE: Circuit figures shown on this page are for SIP-style packages. Refer to
Page 3 for proper DIP package pinout.)
–6–
REV. D

6 Page









AD204 pdf, datenblatt
AD202/AD204
Revision History
Location
Page
10/02—Data Sheet changed from REV. C to REV. D.
Deleted FUNCTIONAL BLOCK DIAGRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Text added to GENERAL DESCRIPTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Edits to SPECIFICATIONS TABLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Edits to Figure 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Edits to Input Configurations section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
Edit to High Compliance Current Source section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Updated OUTLINE DIMENSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4/01—Data Sheet changed from REV. B to REV. C.
Change to SIP Package . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
–12–
REV. D

12 Page





SeitenGesamt 12 Seiten
PDF Download[ AD204 Schematic.PDF ]


Link teilen




Besondere Datenblatt

TeilenummerBeschreibungHersteller
AD201-1.9AMTDVB-T Low Noise AmplifierRantelon
Rantelon
AD202Low Cost / Miniature Isolation AmplifiersAnalog Devices
Analog Devices
AD20203-Digit A/D ConverterAnalog Devices
Analog Devices
AD203SN10 kHz Bandwidth Isolation AmplifierAnalog Devices
Analog Devices
AD204Low Cost / Miniature Isolation AmplifiersAnalog Devices
Analog Devices

TeilenummerBeschreibungHersteller
CD40175BC

Hex D-Type Flip-Flop / Quad D-Type Flip-Flop.

Fairchild Semiconductor
Fairchild Semiconductor
KTD1146

EPITAXIAL PLANAR NPN TRANSISTOR.

KEC
KEC


www.Datenblatt-PDF.com    |   2020   |  Kontakt  |   Suche